Relatividade geral

http://pt.dbpedia.org/resource/Relatividade_geral

Em Física, a relatividade geral é a generalização da Teoria da gravitação de Newton, publicada em 1915 por Albert Einstein. A nova teoria leva em consideração as ideias descobertas na Relatividade restrita sobre o espaço e o tempo e propõe a generalização do princípio da relatividade do movimento para sistemas que incluam campos gravitacionais. Esta generalização tem implicações profundas no nosso conhecimento do espaço-tempo, levando, entre outras conclusões, a de que a matéria (energia) curva o espaço e o tempo à sua volta. Isto é, a gravitação é um efeito da geometria do espaço-tempo.
Relatividade geral 
Em Física, a relatividade geral é a generalização da Teoria da gravitação de Newton, publicada em 1915 por Albert Einstein. A nova teoria leva em consideração as ideias descobertas na Relatividade restrita sobre o espaço e o tempo e propõe a generalização do princípio da relatividade do movimento para sistemas que incluam campos gravitacionais. Esta generalização tem implicações profundas no nosso conhecimento do espaço-tempo, levando, entre outras conclusões, a de que a matéria (energia) curva o espaço e o tempo à sua volta. Isto é, a gravitação é um efeito da geometria do espaço-tempo. Muitas previsões da relatividade geral diferem significativamente das da física clássica, especialmente no que respeita à passagem do tempo, a geometria do espaço, o movimento dos corpos em queda livre, e a propagação da luz. Exemplos de tais diferenças incluem dilatação gravitacional do tempo, o desvio gravitacional para o vermelho da luz, e o tempo de atraso gravitacional. Previsões da relatividade geral foram confirmadas em todas as observações e experimentos até o presente. Embora a relatividade geral não seja a única teoria relativística da gravidade, é a mais simples das teorias que são consistentes com dados experimentais. No entanto, há questões ainda sem resposta, sendo a mais fundamental delas explicar como a relatividade geral pode ser conciliada com as leis da física quântica para produzir uma teoria completa e auto-consistente da gravitação quântica. A teoria de Einstein tem importantes implicações astrofísicas. Ela aponta para a existência de buracos negros - regiões no espaço onde o espaço e o tempo são distorcidos de tal forma que nada, nem mesmo a luz, pode escapar - como um estado final para as estrelas maciças . Há evidências de que esses buracos negros estelares, bem como outras variedades maciças de buracos negros são responsáveis pela intensa radiação emitida por certos tipos de objetos astronômicos, tais como núcleos ativos de galáxias ou microquasares. O desvio da luz pela gravidade pode levar ao fenômeno de lente gravitacional, onde várias imagens do mesmo objeto astronômico distante são visíveis no céu. A relatividade geral também prevê a existência de ondas gravitacionais, que já foram medidas indiretamente; uma medida direta, no final de 2015, por pesquisadores do projeto LIGO (Laser Interferometer Gravitational-Wave Observatory) confirmou as "distorções no espaço e no tempo" causadas por um par de buracos negros com 30 massas solares em processo de fusão.. Além disso, a relatividade geral é a base dos atuais modelos cosmológicos de um universo sempre em expansão. 
xsd:nonNegativeInteger 119 
xsd:integer 47411 
xsd:nonNegativeInteger 39929 
xsd:integer 44898734 

data from the linked data cloud