Processo triplo-alfa

http://pt.dbpedia.org/resource/Processo_triplo-alfa

O processo triplo alfa é o processo pelo qual três núcleos de hélio (partículas alfa) se transformam em um núcleo de carbono.Esta reação nuclear de fusão só ocorre a velocidades apreciáveis a temperaturas acima de 100 milhões de kelvin e em núcleos estelares com uma grande abundância de hélio. Portanto, este processo só é possível nas estrelas mais velhas, onde o hélio produzido pelas cadeias próton-próton e o ciclo CNO se tenha acumulado no núcleo. Quando todo o hidrogênio presente se tenha consumido, o núcleo se colapsa até que se alcançam as temperaturas necessárias para iniciar a fusão de hélio.
Processo triplo-alfa 
O processo triplo alfa é o processo pelo qual três núcleos de hélio (partículas alfa) se transformam em um núcleo de carbono. Esta reação nuclear de fusão só ocorre a velocidades apreciáveis a temperaturas acima de 100 milhões de kelvin e em núcleos estelares com uma grande abundância de hélio. Portanto, este processo só é possível nas estrelas mais velhas, onde o hélio produzido pelas cadeias próton-próton e o ciclo CNO se tenha acumulado no núcleo. Quando todo o hidrogênio presente se tenha consumido, o núcleo se colapsa até que se alcançam as temperaturas necessárias para iniciar a fusão de hélio.A energia líquida liberada no processo é de 7.275 MeV. O 8Be produzido durante a primeira etapa é muito instável e decai outra vez em dois núcleos de hélio em 2.6·10−16 segundos. De todas as formas, nas condições nas que se fusiona o hélio sempre há pequenas quantidades de 8Be presentes em equilíbrio; a captura de outro átomo de hélio dá lugar ao 12C. O processo global de conversão de três partículas alfa em um núcleo de 12C se denomina processo triplo alfa. Já que o dito processo é improvável, devido à escassa quantidade de 8Be presente em um momento dado, se necessita muitíssimo tempo para formar carbono. Como consequência não se produziu carbono durante o Big Bang, já que a temperatura diminuiu a níveis inferiores aos requeridos para que se dê esta reação. Normalmente, a probabilidade de que se dê o processo triplo alfa deveria ser extremadamente pequena. Mas o nível energético inferior do berílio-8 tem exatamente a mesma energia que duas partículas alfa, e na segunda etapa, o 8Be e o 4He tem exatamente a mesma energia que o estado excitado do 12C. Estas ressonâncias incrementam substancialmente as possibilidades de que uma partícula alfa incidente se combine com um núcleo de berílio-8 para dar lugar a um núcleo de carbono. A existência desta resonância foi prevista por Fred Hoyle antes de que se desse conta realmente de sua necessidade para que se forme carbono. Uma reação secundária do processo é a fusão de um núcleo de carbono-12 com outra partícula alfa para dar 16O estável, com liberação de energia em forma de fotón gama: A seguinte etapa onde o oxigênio formado se combina com outra partícula alfa para dar lugar a neônio é mais dificultosa, devido às regras de spin nuclear, e portanto não podem formar-se elementos mais pesados por esta via. Como resultado destas reações, se formam grandes quantidades de carbono e oxigênio mas só frações diminutas destes se transformam em neônio e outros núcleos mais pesados, sendo portanto estes dois os principais produtos da fusão do hélio. As resonâncias nucleares que dão lugar a tais quantidades de carbono e oxigênio se citam geralmente como evidência do princípio antrópico. As reações de nucleossíntese por fusão nuclear só produzem elementos até o 56Fe, o núcleo atômico mais estável; os elementos mais pesados se produzem por processos captura neutrônica. A captura lenta, o processo S, produz aproximadamente a metade destes elementos. A outra metade se produz no processo R ou captura rápida, processo que provavelmente tenha lugar no núcleo das supernovas de colapso (tipo II). 
xsd:nonNegativeInteger 35 
xsd:integer 1470258 
xsd:nonNegativeInteger 9769 
xsd:integer 42252892 

data from the linked data cloud